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SIThflIARY

In this paper an algorithei fcr calculating roots is given that is

Newton ’s ~cthod initialized wi th  a piecewise best sta:t~ ri~ apprcxi~~—

tion. The piecewise ~cst ~tartLng approximation correspor .~is to a

partftion of the interval of th~ domain of Newton ’s method and it is

shown how t~ chocse tid s partition to be optin2 l .  Explicit fornuins

are given ~~~~tn linear polynomials are use~i for the best starting ap-

proximations. SpecIf ic ~xd-nçles are given for square roots , cube

roots and reciprocal s 1uar ’~ ~c o ts .

1. INTRODUCTION

An effective algorithm for calculating roots is Newton ’s method

~~~ initialized with a best starting approx~naticn . ~.ecently 2,3J, this

procedure has beer. ~rcdifi~d in that a piecewise best starting approxi—

• — ~~tion was used for initiali:in~ t~,e Ne~ ton it•:r~ :ion . This is £qui—

valent to subd ividing the interval of ~p7lic~ t ion of the Newton itera—

tion into subintervals .~~d :-~~Lying the theory o~ best  starting appre~ i—

mations tc each subiaterval. :~ this paper , w~ shall describe ho~

this sub~~i v i3 i c~ can L C •~~ne Ln n~ ~ptin~ l m~:r~t2r .

1Resea rc~ ~.ponsored ~~ the \~ r ?‘~r’~e O f f i . : e  ef  ~c~ en t i f  Ic T~~~:~~r c h .
Air Force ~v~ t~ns Co.:~~.in~ , .~J.\F , under ~~~~~~ ~~o.  ~~~~~~~~~~~~~~
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IJ~~HUIlSl.......... The theory of best starting approximations for  ca lcu la t ing  roots

_ _ _ _ _ _  
was first studied by Moursur,d [1.0] for the special case of square roots.

This th c cr y  was extonded to general roots by ~oursund and Taylor in

(11). Subsequent stu~LLes found tha t  the best s t a r t i n g  approxim at ion

1— _ _ _ _ _ _ _ _ _ _ _  

for calculating root ; via Newton ’s methcd is independent of the nui~bor

of iterations to be used and is, in fact, a multiple ot the best rela-

tive approxir~~tlon to the root [8, 12 , 13, 14 , 1.5, l7~ . Surprisingly,

it was also shown [3, 12 , 14] tha t one of the square root subroutines

in use prior to tLe development of this theory :si , was, in fact , the

method of Moursur.d.

This theory allows considerable leeway in desiginin; a specialized

root routine. In the case of large scale computers , It is possible to

design routine s that return a predetermined accuracy and in most cases

have a decreased tine La; when compared to calling the system ’s subroutino .

Whereas , for microprocess ors these algorithms can be incorporated as

firmware support cr.e’;cr the ability to calculate roots is desired .

For examp le , in [2,3] square root routines of this typo were developed for

8—bit and 16—bit microprocessors, where it was desired for the 16—bit

routine to develop an algorithm which would give 15 bits of accuracy after

one Newton iteration Initialized with a lirear polynomial and have as its

1 2~~domain of application a l l  numbers of the form X = Ln order to
2

develop such an algorithm It was necessary to partition the point set into

X X1U X2 LI X3, X1 X (1/!,, c11, X2 
— X fl (c 1, c~ ] and X3 X 1’~ (c2, l~

for appropriately chosen c1 and c,. Treating each of thcre three sets

independently it is possible to develop a square roct algorithm satisfyin;

the constraints listed above (.:ith th~ ~::~oept ion of the domain const rnint~~.

Thus, the algorithm used a piecewise best Unear polynomial startinc appro:~i-

mation —— defined to be optimal on X 1
, X 2 and X 3 se~ i ra t e 1y. The a c t u a l  •

~se
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of this algorithm would first involve a scalin; of the given positive

number by an even power of 2 to produce a number in X. Next , it would

determine which subset (X
1
, X, or X3

) contains the sc3led numb er and

then evaluate the best llr~t.~ar starting appr oxiration at the soct~ ed

number. This value &s th:n u~;ed to initialize one Newton iteration

for calculatin; s;u.lre rcots. The result of this iteration is then

multiplied (shifted) by 2 to half the power of the original scaliri ; and

then this value is returned as the desired square root. This algorithm

was compared with the corrc~ pcrtd1 r.g direct and Cordic type oi methods

(16] inc1udin~ Ch~n ’s no~iified version [~] and ~ar f ound to be p r efe r~ b 1e

for the types of architcctures considered . A second example was in the

development of a rcoiprocal square root routine usin~; ~ divide-free

Newton iteration for inclusion in the partlL le mov~n; section of a

relativistic plasma code on an lEM 360/91. The des i~ a constraints in

this case were a required accuracy of 10~~ after one ~;ovton iteration

ini t ia liz ed vith a linear polvnoniol on [1/8 , 1/2]. Here the interval

[1/8 ,1/2] was divided into five subir.tervols in order to satisfy these

cons traints.

The main result of this paper is the following : Suppose that one wishec

to subdivide an interval (a, bJ into v subintervals and calculate a root

via Newton ’s method on [a , b ]  by ca lcu la t ing  independen t ly  on each sub—

interval. Then there ex is t s  a unique p a r t i t i o n  tha t is opt imal  w i t ’~.

respect to the re la t ive  e r ro r .  Even though this result is for the contIn v~ :s

case it is still useful for ac tual applications since it suggests where to

sub id ivide in a dis crete setting. The precise orglr .icat ion of t h i s  paper

is as foll ows. Section 2 contains a suzm~ary of the definitior .s and basic

theoret ical  r e su l t s  of best  st a r t i ng  a p p r o x i m a t i o n s , ~ec t i e n  3 g i v e s  our

general results and section 4 gives spec i f i c  examp les  of t h i s  theo ry  f o r
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L calculating square roots , reciprocal square roots using a divide free

iteration and cube roots , each subject to certain design constraints.

2. DEFINITIONS ANt) BASIC N OTI ONS

Let (a ,bJ be a fixed interval with 0 < a < b and set

fa ,bJ=~ R=P/Q : P ~ P , Q E 1 , Q ( x )  > 0 for  all  x ~ [a ,b J ,  (P ,Q) = l}

where fl~ denotes the class of all real algebraic polynomials of degree

less than or equal to k and (P,Q) denotes the greatest common (poly-

nomial) divisor of P and Q. Fix a a real number , o ~ 0 or + 1, and

define N :  C+[a,b] + C[a,b], where C+[a ,b] denotes the class of all

continuous positive functions defined on [a ,b], by

N (h) (x) o[( 3 — l)h(x) + X 
~~~ 

3 = 1/i.
h° (x)J

Observe that ~~(h)(x ) , for fixed x is simply the result o one N~vt’ n

iteration for calculari :~; x ~fth h (x) as its starring apprc::~ - i tion

(or initial guess). That is , the formula for N is sI~ ply the result

of apply ing Newton ’s method to y3 — x = 0, x fixed . As usual , we also

define Nk by Nk (h)(x) N ( N k
~~ (h))(x ) , the result of k Newton iterations.

Then R*E ~~m [a , b i is said to be the best (relative) starting approximation

fromR [a, b] for calculating a—roots on [a, bi provided

(1) r~~(a,b1a ~fx~_
—_N ( R *)(x)~ utin f x

Q

(a ,b] RE
~~~(a,b1 x a 

(a,bJ

where l l f ( x ) U (a,bJ lnax [If(x)I : x ~ (a ,b]} for f E~ C [a , b]. We shall

suppress the subscript [a, b] on ~J ~J whenever the meaning i s  clear . Thus

th e relative error of approximating x~ with one Newton iteration for calcuL~ :

*~
a with initial gue~;s R(x) is ninimized on the i n t e r ~.’al [a ,b] if  R. (x )  is u~~

*as the initial guess. It is shown in (6,9 1 t h a t  R ex i s t s , is unique and to

. .  
_ _ _
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a multiple (d~;~nding u:ori a , Ca , s:i , m and a)  cf  the best r e ia t ive

approximation, F(x~ , x~ from ~ [a~ b), i.e.

(2) - 
~(x)f~ a ~fx~ 

— R (x )~ . Frcm the
,~~ I RCf[a,b] xci

general theory of uniform relative approximac~ on Cl], it is known t hat

~ (x) exists, is unique and can be calculated by various methods (see for

example, [7]). In fact [6,9], if — 

~
(x) l~ A then

xci a

y~1~ (x) where

(3) [(ci + - (1 - A
~

) 3 ’) /2 (~ 
- l)X

~
(l - x 2 ) 8_ l] 

~ i/a

and this same R*(x) is also the best starting approximation from .R.
m
a,b]

for k Newton iroret~s, i .e .

k
Ca b3 

— N~ (R*)(x)~
a Xci 

RE~
m [a ,b] Xci

n
In closing this section , we would like to remark that a theory

of best (absolute) starting approximations for calculating roots , i.e.

a kinf lix — N (R)(x)11 ,
RC)~Y’(a ,b3

k a positive integer is neither as well developed nor as rich as the

corresponding relative theory. It is known [9] that best absolute

starting approximations exist, are unique and can (in theory) be cal-

culated by a Reines type algorithm or a generalized differential cor-

rection algorithm [7). Whether or not best absolute starting approxi-

mations are a multiple of some other well known approximation to x1

is not ~mown (they are not a multIple of the best uniform approxima-

tion to xU) and opt imal partitic~~E- .: -~ i Lt ~ :crr?crondin ~ te we

shall prove for the relative case are not known. Thus, unless expli-

citly stated to the contrary, we shall be concerned with the relative

theory in what follows.
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3. MAIN RESULTS

In this setting, we wish to first prove

Theorem 1. If R*E ~
,m [a ,b] is the best starting approximation from

- ~
rn
[a b] for calculating i-roots on ta ,b] then ~(t) =

pa < t < pb , p > 0 is the best starting approximation from ~~~~~~ pb ]

for calculating a—roots on [~ a , ob ].  Furthermore , ~~[a ,b] = ~ [pa , p b .
a *

Proof: We are given that n [a,bJ = 
X — N~1(R )L~1~ci xci

Define the change of variables x = t/p . Then, for pa t < pb , by

direct substitution we have that

— N~~( R ) ( r ) ~ — 
— N~ (R )(x)

ta xci
[p.a~~b] [a,b]

— N~~(R) (X)
— mm

RE~~~[a ,b] 1 xci [a ,b J

- mm fj t
U
_ —

~~~~~~~~~~~~~ 
t ’

~ I [pa ,pb ]

— fl~
[Øa ,pb].

Thus, by definition R(t) = p~ R*(~/p) is the best starting approximation

from ~~~Ep a , ~h] for calculating a—roots on [pa , øb] and , by the f irs t

comment of the proof , fl
~
Ca , bJ =l

~
tPa, ob].

Using this result , we are able to prove our optimal partitioning

result. The flavor of this result is the following . Sut pose that one

wishes to subdivide the interval [a, bl . a < b , into v subintervals

and calculate a—roots on [a, b] by actually calculating a—roots ir.deDcn—

dently on each subthterval. Then. it turns out , that there exists a uni que

partitioning of [a , b] into v subintervals such the relative error of
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approximating x
1 
with a Newton iterate initialized on each subinterval

with the best startIng approximations for that subinterva l is minIma l

over all such partiti ons of r 5~ b] and , in fact , the relative error on

each subinterval is the same.

Theorem 2. Let P=~ Cd : d Cd0, d~ , . . .,  d~~ with a = d0 
< d1 

< d 2 ~

< d~,1 < d~, = bi be the set of all partitions of [a, b] into v subir.tervals.

Then, there exists one and only one nartition , c = Cc 0, c1, . . .,  c ) €  ~~

for which

max r~ [c., c ] = mm max n [d., d ] .
a i i+l i+lO<i<v— 1 d€r O<i<v—l

This unique partition is given by the formulas c~ = ~~~~~~~~~~ j 0 ,l,...,v.

In addition , this theor m holds with p renlaced by r~ for k a positive into~ e~a ci

and r~~ [c .,  c . I ~~~~ , c. I for all k , a en~ci ~. 1+1 ci 1+1 it2

Proof: First , observe tha t for the parti tion , C we have that

[c
a
, c~~.i] E p~c0, o~c1] where p~ = (~-)~~

“, for ~ = 1, .. . ,  v — 1.

Thus , by Th eorem 1, n~[:~ , c~ 1~1
] n3[c 0, c1] f :- r u 1, ... , ~ — 1.

To prove the minm ax s t a t emen t  of Theorem 2 (which w i l l  also es tab l i sh

the uniqueness claim ) we prove the following result first. Namely, if

(a, b I , 0 < a < b and (c , d l ,  0 < c < d are any two intervals and >

then n
~
[a. b] > 1

~
[c , dl . Now by Theorem 1, we can replace [c , dl by

[ac , pd] where p = and n
~
[c, dl — n (pc , pdj . T~.u3 S~~~~~~~~~ e~ ed<b , we

shall prove that n [a , b] > ri (a , el which wIll establish this result.ci a

To do this, let R(x) be the b es t  r e la t ive  a p p r o x in c i t i o n  to xci on (a , b ]

trom~~~[a , bJ . Define the defect , d, of R(x) by d min(m — ~P, a — 
~ Q)

~

-- . -  

--
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where R(x) = P(x) /Q(x ) and ~P denotes the exact degree of rhe polynomial

P. Then, by the standard t~~ory of best relative a~’pro :cinition [1],

there exists at least N a + m + 2 — a extreme points , a < x1 
< x 2 <

< < b on which the e rr o r  curve E(x )  I — alternates , i.e.,

~E(x 1)J = 
~EH, 

= I ‘I .sn’2 E(x :) -E(x
1~1
), 1 1, 2 , ..., N 1.

Since E C C
1 [a , b), we must hi ;t~ that E

’(x
1) 0 for at least i=2 ,...,N— l .

Thus, E’(x) must h::v~ at least a + m — d zeros. Now,

E’ (x) ~~ 
1[xO (x ~~’’ (v) —

(X
a

Q(X ) ) 2

and since a > 0 , and the degree of the polynomial In the bra~~ ets in the

n~~erator equals ~? 4- ~Q whic h  is less than or equa l to n + m — 2d ,

we see that  E ’ (x) can have at mo st  n + m — 2a zeros in [a, b i . Compa r i n ;

these two zero counts , we see t ha t  we mus t  have d = 0, ~P = m , 
~ Q = a ,

— a, b and that E(x) mu st  have p r e c i s e l y  N = a + rn + 2 extreme

points in (a, bi . Pere, y € [a , b] is said to be an extreme point if

(E(y)~ . Thus , R is not the best relative approximation to

on (a, e) frcm ~~[a, e] since E(x )  do es nor have the necessary a l t er n a t in ;

behavior on (3 , el . Let R1€ ~‘ a , e] be the unique best  r e l a t i ve

approximation to x
ci on (a , e J .  We claim that  is not a mu l t ip l e  of

ft. This fo l lows  :r 03  the above zero counting ar~umont , since for any

real c ~ (~, E
~

(x) a — 
cR (x) 

must be such that E~ (x ) van ishes in [a , b]

only wher e E’(x) vanishes in (a, b], ~~~ly~ n~ ~~ it ~S ~‘. o not ~~~ t~~ r-,- -~:se r ;

number of alternat ions to be the best relative 3~)proxir-1ti on to x~ in fa , e~ .

Since the best starting approximations for caleulatin; a—ro ots from

E
m [a el and ‘‘ta , SI on (a, e~ and (a , b~ are mu lti ples of R. and ~~.

respec tlv t.Jy ani R r~ ~~~~~~~~~~~~ el we m u st  hav e that

__-

~~~ 

- r~~ 
-

~~ 

. 
_ _ _ _ _
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- N (R) (x)~
r~ [a , eJ = m m  < n [a , b]ci a I ciRcX~ (a,e] x 

a,ej

by uniqueness.

Now let d = {d.~~~ 0, a = d0 
< d

1 
< ... < d,~, b , be a different

partition of [a, b] than the one given by the furmulas in the hypothesis

of Theorem 2. Then we claim tha t for some j ,  0 < J < v — 1 , -
~~

--d 
+1 

>
U
i i

must hold. Indeed , if td +1 ~ c1 
for all j with strict inequality holdin;

i i
at least once , say at j1, 0 < Jl < v — 1 where is the first index where

strict inequality he’d; (such an index must exist since the partitions

arc distinct), thcn we must have that d
1 

< for 0 
~~. i ~ 

and d~ < c~

for < j < v. This will give a contradiction since we mus t have

d c,~ — b. Now, this assertion is proved by an inductive argumer .t as

follows. Since d0 = c
0 

= a, we assume that d. < c. hold for scme

o < j  < — I then d~~1 < by our original assumption so that

< e
1V

c~~~~~~ < c /’
~c~j’~cj ~~~~ Thus, for 0 < j < we have

-~~ cj
. For ~ 

= j1, the assumption t-dj+1 c. implies d .~~ 1 
<

< c ”c~”c. C
j~~~.1 and then , by induction again , we find that d~ < c .

for < j ~ v as claimed. Thus, 
~~

d 4+l < c
1 

cannot hold for all j.
i J

Let j, 0 < j < v — 1 be an index for which ~~-d +1 
> c

1 
holds. Then

i i

the interval [d i. d~~~
÷1

J is such that ~~~~~ ~~~~ 
[a, e.] with e~ > c1.

Hence , by our preceding work we have that n
~
(dj~ 

dj+i] 
> 
~~~ 

C
1

] as desired .

From this it follows that max T)JC j~ c~÷1) < max n [ d ~~ d .~ ,]
O< i<v- l 0< i<v -l

for each d ~ ~~uith d ~ c. To see tha t this is also true for ~ replaced

with ~k , k a positive integer , one need only obscrvc tha t N
~ 

is a strictl’.’
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pointwisc monotone one—sided operator [9]. What this implies is that

N (R) (x) ~ for x E [a, 5] and R(x) ~ x
ci and if , N ( R

1
) (y)  > N (R

2
) (y)

for some y c~ (a, SI then ~(R
1

)(y) > N~
< (R

2
)(y) for k a positive intcger.

From this observat~ cn the final result readily follows .

Before apply ing t r io  th iory to some specific examples , we wish to study

the problem of findin; best storting approximations from ,~~[a , bJ

for calculatin; nth roots on ~a, b]. In this very simple case , it is

possible to give analytLcal formulas for the best relative approximoticn

to x
11’fl from on (a, b] and , therefore , also for the best starting

approximation frem for calculating ~th roots on [a, b]. See reference

(13] where this result has also appeared .

Theorem 3. Fix th~ intc -;al [a, b], 0 < a < b. Then the best (linear)

relative approxi mation to x11~ on [a , b] from 
~~ 

~ (x) = ~~ + B, is

given by
1/n 1/n(b — a )(l —(4) c i —  

-- b — a

(5) — 
(ba~~~ 

b — a  
—

where

1/n 1/n
(6) A 

I ~I 1 
a ~~~

jx 
p(x)

v + 1’

and

(7) v - n (bci 1~~ - ah
1

~~~~~ ~ ~ (n - l ) ( h hhhl 
- ~~~~~~~ 

1/n

n — 1 \  b — a  
~~~~~~~~~~~

Proof: By referrir; to the proo f of Theorem 2, we know that the error

curye E ( x )  I — a - must have precisely three extrcmc

I ~~: - 
_ _
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P. points , a , ~~~, b , a < < b and that p wi l l  s a t i s f y  the fo l lowing s y s t E m

(the unknowns are ci, 5, ~ and A)

—l / n1 — a  (aa+~~) = X

1 — + ~
) = —A

1 — b~~
’
~ (ab + ~

) = A

—1 /n —(n+l)/n
(n — 1)ci~ —

~~~~~~~~ = 0

where the fourth equation is the derivative of the error curve at ~ set

equal to 0. Also, since the best linear relative approximation is unique ,

we have that there exists one and only one solution to this system.

Solving simultaneously for a and 5 in terms of 1 — A in equat ions 1 and 3

gives (4) and (5) of the theorem . Substituting this in equation A gives

an expr ession for and then substituting all these values in equation 2

gives the formula fo r A .

Corolla ry 1. The best starting approxima tion from . for calculating

~th roo ts is p * (x) ~~ p (x) whe re ~ is defined in Theorem 3 and

is given by (3) with a -~~~.

4. EXA~1PLES

In this section we give o:ecific exa 1~ a of the above th : : ry

f o r  comput i r ~p square roots , reciprocal square roots using a divide—free

Newton iteration and , fInally , cube roots. In the first two examples

we shall only use best starting approximations from and consider what
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happens when at most two Newton iterat~~ns are required. For the cube rcot

case we sha ’
~l also consider other classes of rationa l f mncti ons for the

in i t i a l i za t ion  of the Newton  i t e r a t ion .

A. Sguare Roots

To develop an algorithm ~or computing square roots based upon the

preceding theory , we muo t first select an interval of application. Any

interval of the form [a, 4a], a > 0 will do; however , the rearonable

1 1  1 1
choices are intervals such as [~

, -i-], fr~ 1] or [
~
, 2~~~ . ~e shall use

(4 2] as our interva l of application here. Thus , an algorit hm for calcu—

lating square roots based on [
~
, 2] will have the following ccmrcnents .

First of all , the algorithm will have a scaling feature . rhus , to find

y > 0 the algorithm will first scale y; that is , it will cal colot e r.,

an integer for ~hich y 2
2m
~ and x 6 (~~, 2 ] .  Next, it will ccm rute on~

or more Newton iterates , N
112

( h ) ( x )  = ~(h ( x )  + j~
-
~

-j- ) to caicu~ute ~~

using the above theory with a best linear polynomial starting app r -:-:im1 ti~ n

o~ [-k, 2]. It will then multip ly (shift) this final value by 2
m

and return this for the value v~~~, For a = ~- the formulas of Theorem

3 and (3) for the interval (a, bi reduce to

fb l /4  
- a

l/4
~
2

(8) ~112 
— 

‘b~~
’
~ + a~~~

i

1 — A(9) a — 1/2 1/2b + a

(jO) B • aJ2bU2a

2 -1/2
(11) 

~1/2 
(1 — A

112
) 

- - - . - . - - ~~~~~- -



13

Thus , the ~~~~ ~~~~~ ~ve o: 1 - z x i - . v  ~-~ n to [
~~

-, 2~~ Is t x)~ ~~~~~~~~~~~~~ .~~~~

+ .~ S~ 2S137~~ ~~~~~ ~~~~~ 

~ 2 
— .0 2 ? 4 3 7 2 ~~:52 t o  th ~~t t n - f  ~~~~

approx~ —~~~~n f r - ~ 1 . on [ ,  2] f:-r c - i ~ g s~~;~ re rc:~ s

L) with (re ativ ’ •:rr;r’

N (r~ )(x)
which can ~~ c c u i i i t e  I ~~; e.’~ì .  ~t 1 — :< either of

endpoints of the interva l [a, 5] (here x ~~
- or ’ 2). T~ uo , af ter T ne •:wt

iteraticn , we are ~u o r a n teed ~n ittr’oxination f.sr v~~ w i t ~ (re a:iv~ ) error

< .396107 x 10~~ on [ ~~
- , 2) .  In addit ion , n~~2C~-~ 2] 7.S~~l x iO~~~, so

that if one were to ‘~-ilc~~l-~te ~aro  rocts  by th is  n~ tho-i ~~~~ ~vo ~~:- w t cr .

Iterates t he  (r ot v~’) ccc ~raoy of the proxination cm [
~~

- , 2)  to /~ w:u 1~

be < 7.9~1 x i0 8. (All c a l :u i a t i - : ns  wor e  ~icrie on a Texas .o:r-i - -~mto ~~-~ E).

Next , cons i~~er t h e  c o c e  where  the !r - ~rv-~l [~ -, 2] is to Se sut ’;i~ c

into two c c h ir . t or . a l s.  Ey Tho -trin 2, th e  ortlmal n vL:ion [0 , :

1] U t l , 2]. Thus, to calculate /7, y >  3 in t h i s  c-a:e, t : a l g r1 .

would a;-lir’. scs~ e y, y 2 x, x E (~-, ~~]. -{owever. it cu~~t nex t

which subinter’ia l c o n t a i ns  x by conraring x w i th  l~ A ft~~r d o in g

algori t hm ~ roeeeds as ah o v e  w i t h  the  bes t  c r or t i n t  l i n ear  ~o1 :n : m a ~ 
—

given below , using the polyn om iel t : -~~t cc r r -~~~~cm~~~ to the int-:oval

x.

For (i-, 1] the best o t a r t i n;  a~~p r o x i n a s i on  f rom for c-i~~c u l u t ~~n :

~~ ots on [i-, I] p~ (x )  ~r112
p(x) .5321785321x * .ui~’3l~ 2 n I  wit h

1] 2.7~~9i2 x 10~~ and n~12 [
~-, 1) 3 .3 x l0~~~.

For the second cublnterv~ l, [1, 21, the best st1rtir.~; : •:im ~~t i c n  fr~ -~

for ca .culating occcre t o ot s  on [1 , 2) i c . L~l7 l? L 2 l x ÷ .5~~~~~~ 5:: l

so that n 112 C 1 , 2 ] :  2.789 9 12 X •~O ~~~ ~~~~~~~ 
2]

= 3.8 x 10 (a .~ ~ne:r cm 2 pred~ c t c ) .

- I . 
~-- - - - .- - - - -~~~~~~~
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Finally , for the square root case let us consider this al orithm wh:s we

subdivide in to  three subintervils . In this case , we shall scal e to the

1Interval [c-, 1] so that a conncnt with resDect to [3] can be made (the choac D

of 1) rather than [-
~

-, 2] in that paper was sinrly a preference for how

we viewed the fixed ~-:ir.t numbers in cur microprocessor). ifl this case the

1 1 1 V3 1 2/3 1 L ’3 / 
1

theo ret ic a l ly  o:tioa~ s’~o~~iv~ s~~cn is ~~~~~~~~~~~~ I [(
~

) (
~

) ] L~~~
)

Repeating the above calculations for these three intarvals , gives p~:(~~)

~ 1
= .8879377727x ~ . 27~~ 632 ST27  for [

~~, (c- ) 
~
; p~ (x) .70L~7E66772x

+ .35237833fB ~~ [(
~~
)
~~
‘
~ , (~~

-)
~~
‘
~~]; and p~ (x )  .5533657i~54x + . 3 9 ~ 3~~2 6 3

for [(1)
1/3 .] with 

~1/2 ~139x~~~
6 

icr all three subintervals. In all

cases , is of the order •:f I x 10~~~~~ in this example . Since 2—16 ~~

the or~~r ..~~3 x O~~ , it a~cears to be necessary to ~a~tition [k- , i] in::
three s int~~rvo i~ to obtain an accuracy cf at least ~~~~ Since the ~on a L a

16
~ 2 - - . .of ~ppi icat ion ~~] was X {—i-~

}
~~~21u + i ,  s t e  ob c’ie t oe sr y  ~n:1~ es t n it

should be ;art ti :ne2 ins: X.~~ X2~J X3 where ~~~~~~~~~~~~~

16 2

and X3 = Fsr this ~arti:icn the errors rt
1~2

[X
1]~ ~l,2

1
~
2]

and will all be less than ci abcve m d  in this case not ecuo

However , in [3] the absolute err-:r was the n.~asure of accuracy so tha t

this subdivision ~ i: — ‘dified . pecificallv , fcr the subdivision

x x10 X
2 U 

X
3 ~lven abc-ye we hive that (t~ =

— N1,2 (p~ ( , X~ ))(x)~ <

1 1/3 1 1/6for x 6 X~~, ~ = 1, 2 or 3 where c
1 

= ( - )  , s
2 

(
~

) and E
3 

1 and

p*(. , X 1) denotes the S.~st l inear  ( r e l m t i v - : ) s t ar :in o  m : r r c x i r t m t i c n  f~ r

calculating square roots on X1, 1 1, 2 or 3. Thus , our f ina l :holce f o r

our par t i t ion  wis X Y . U Y 2 U Y 3 whe re : (~~ , 
~~~~] 

C’~ x , Y 2 ( -
~~

-
~~

- , ~~~~~~~~

and Y
3 

= (
~4~ 1) I~ X . in a d d i t i o n , the  ~o L y n c n i ~~ls p:~(X , X . )  a . x  + 

~~
.

* __________________________
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were also modified so tha t  the product  a~x could he computed th rou gh  the

use of two shifts and one add and the required accuracy a f t e r  one Newton

Iteration was still ..,—16 (absolute error). As remarked earlier , it is

not known how to optimally subdivide an Interval for the correspond ing

absolute error problem . To some degree, this would involve estimating

the error of this procedure as a function of the interval and this is a

difficult problem . :n fact , even in the classical theory ci best uniform

approximation not much is known Lo this regard .

B. Reciprocal Sguare ~oots — Dfvide—Free Iteration

This amounts to ar ’p lying the above theory wi th  n = — (n = —2) .

In this case N 1~ 2 (h) (x) ~~~~ [3 — x h 2 ( x ) J .  In developing an algor i th -i

using this i te ra tion  we must  again scale numbers as in the square root

case. Thus , we shall assume that the scaling will be done with respect

to the Interval (
~~, 

2]. In what follows, we shall give the best linear

starting approximat ions  for  th i s  a lgor i thm when one uses the in terval

2), subdivIdes it into two sub intervals and subdivides it Into six

subintervals.

Nov for th is  p a r t i c u l a r  i t e ra t ion  on an interva l (a, bi , the formulas

of theorem 3 and (3) reduce to

~1~~~•~
•
~ ~~ ~~~~~~~~~~~~~~~~~~~~~~ I.~~ - - 

. - -~~~~~
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0
1/2 1/2 3/2 3/2 1/2 ‘J2 112 - 1/2

(12) 2(b + a b_~~~ ~ ) — 3 a b (~~~~~~~~- ,i )
—1 /2 2(b + a~~

2
b
l/2 

+ a) 31 
+ 3

3/
a
u/2

b (b
r ’ + a~~~)

(13) - - 
1/2 1/2 1/’ 1/’a b (b + a  ~

)

(14) 8 - -(b + a~’2b
h/2 

+ a)a

1112
(15) 

~
‘—1/2 

— 

3 A2— 
—1/2

Thus, the best starting approximation from fo r  c a l c u l a t i n g  r e a it r c ’c s

1square roots on [-
~

-, 2) via th is  i t e r a t i on  is p *( x) — — .43l 4l~ 6SLx

+ 1.509958386 , wit h 
~— 1/2~~~’ 

21 = 1.048824252 io
_2 

and n
2

112 [4, 2)

— 1.64427987 x

For subdividing (~ , 2] into two subintervals , we have by the previc~~s

theory, [
~~
, 2] = (

~j~ 11 U (1, 2] is the optimal partition. For the

subinterval (-i, 1]~ the best starting approxImation from for calculotin-

reciprocal sq uare roots on i4~ 1) via this iteration is 
p*(x) = — .8lO05375l~~
I —

-

+ 1.787875129 with q~1i2~2, 1] 
= 7.37705125 x 1O~~ and r( 112

[-~- , 11 = 8.lol1~-~~

Likewise, for the interval (1, 21, p*(x) — .28639725-35x ÷ l..~54 1S627 ~~~~

— n
112

(1., 21 n 112[-~, 11 and 1/2~~ ’ 
21 — T1 1/2 [1

~ 
21.

Finally , let us consider the form of this sort of an algorithm w he t-c

- 

- 
it is desired to subdivide [

~ , 2] into six subintervals. In this case

the optimal partition is

I) ~~~~~ 2
2/3

] U (2
2/’3 , 2]. We shall only consider the interval (1 ,

since the other intervals can be treated in a like manner. Thu3 , for

(1, ~1~/3 J by direc t calculations , p *(x) — — .4186992113x 4- l...1~ 201l35

with l_1/2[l) 2
1/3
] 9.352785 i0

6 
and n_11211 , 2

1/3
] - 1.35 ~~~~~

Note that , in addi t ion to the cost of the scaling and dete rmini n~ which

subin terval contains the scaled number , th is algorithm f~ r one - wt e t ~

iteration , consists of three ~u1tiplt~ o , one add and one shift.
- — -1”---- - -.- - - - - - - . -~~~~~ - - -

- 0
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C. Cube Roots

For this p3rticular example we will also considerscme nonlinear best :t:r~ inf

approximation. As before , in designing a cube root rout ine  of th i s  sor t

one must first select an interval of application. The interval we shall

use is (~~, 11. Thus , the final algorithm for computing ~~~~~ , i real , would

have a scaling routine which would (I) change the sign of y if y < 0 and

also change the sign (to negative) of the computed cube root of —y prior

to returning a final approximation , and (ii) scale y (assume y > 0),

3m 1
i.e. compute y 2 x where m is an integer and x E. (-

~
-, 1]. Then, the cube

root of x can be calculated by any one of the following routines; the

result will be multiplied (shifted) by 2
m 

and returned for ~~ . In what

follows, we shall give the best linear starting approximation for the

1.
full interval [

~
, 1) and partitions of this interval into 3 and 6 suaintervs .Ls.

In all cases, we shall also give the (relative) error after one and two

Newton iterates. In addition , for the interval [-i, 11 and the partition
of this interval into 3 subintervals , we shall give the best starting

- approxima tions from i~ , 0 < n , a, m + n k, k 1, 2, 3 where m and n

for fixed k are chosen so that the best starting approximation from~~~,

( ,  ) 
~ (m, n), 0 < r n , n, ni + n = m + a does not give a better relative

approximation for after one newton iteration . These best starting

approximations were calculated on a CDC—6400 where we found the best

relative approximation to on the interval, in question diseretized into

e q u a l l y  spaced mesh points with a step size of h — using ( 7 1 .  ~e

then multiplied this function by the appropriate “11) 
given by (3) usin~

the respective A 113.
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First , for (-h, 1]. For the class ~1
, we find tha t the best starting

approx imat i on  is p *( x)  = .60554~ l056x + .4541610792 with r
1~ 3

[~
_
. I) = 3.30112

and ~~~~ 1.08496 10~~. In a d di ti o n , the best  s t a r t i n g  ap p r o x i m ~~:i~~n

from Tt1 
— 

~~~~~~ 
1] is better than the best starting approximation iron

Next , for k — 2, we find that for the three classes , ~~, 
= 1]

~~ (~~
, 1], ~ r-k , 1) t he b e s  t s t a r  t i n g approxImation fron -~~

is the best since the hu~ t relative approximation to vx from ~~~ 1] on

~j, 
1] gives a r:1-at ive rror of approx lmlt eiy .6)0 10 ; whereas , th is

correspo nding er~~~ i~ .159 x io l 
and ..~l3 x 10

1 
fro~~~~[~~, 1] and

1], respectivel y. Using the code (7], we ~ir~i tnat the best

s_ f l’
relat ive a p p r o x i n i t i o n  to ~~~on (~

, 1] is R(x) . 477~ 42S 9 6 — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~8

2 — 2 / 3with relative err r 
1/3 

= .650071912”) x 10 so tha t ‘
~1/3 

= (1 —

— l.00002~ 174 ar.d the best starting approximation is S*(x) 1.477~ -~ .321

.84l478~4°3 1 — 5 2 r 1 - — a
— 
.7387462419-r x -.~ath r~1,~3

[~-, 1) = 4 .226074  x 10 and r~1j3,~~
, 1] = 1.i 8~~ i

For k — 3 by the same procedure we find that ~j [~-, 1] is the prefera~ 1o
class from L’~~[ ,~ I 11, ~~~~ 1), [~

, 1) and t~~-~-, 1J . For this class , the

best starting approximat ion is R*(x)  = .2437995493x ± .8898929185 —

vitn n1i3[~~’ 11 — 8.438 x 10~~ and n113( 8, 1] = 0.0 (on our SR-56 , should be

of the order io~~~).

Next , for the (opt imal)  p a r t i t i o n  [-~ , 1]= [~~~~) U [~v~1 U (4,1]. Here

we shall only give the results for (-
~

-, 1]. The best l inear s t a r t i n g

approximation for calculating cube roots on [-i, 1] is p*(x)~~.61535019~ 3x

+ .5913005214 with i1,3[f~ 11 — 4.407136 x 10 ’s and r~3 [f 11 1.94 x IO~~ .

As before on (
~
, 1], this class is preferrable to ~~ 1].

Once again, 
~~~~~~~ 

11 is the preferrable class to use from the set

1]. A~ (~’. 1] and 11. The best stzlrtin& approximation fr-~m

1] for calculating cube roots on (
~~
‘, 1) is R*(x) — l.7907092 ’4

1.3474759R~ 1 —8 2 1
1+ .703536429.~ ~~~~ ~l/3~ 2’ ~ — 6.503 x 10 and n 1~3 [~~ 1) 0.0

(on our SR—56 , should be of the order of lo~~
6
).
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From the classes 11, ~~~~~~ i i ,  1] and 7~ t~-, 1], we again

find tha t the class ~~~~ ii will give the most accur3te (relative) approxi-

~~tion . The bes t starting appr oximation from ~~~~~~~ 1] is R*(x)

— .1662848358 + l.096040953x 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

with fl
1 /3

[ C ’  11 1.5 x 10 1
~

*nd ~~~~~~ 11 of the order 10

Finally, if one partitions [~
, 1] into 6 subintervals the optimal

1 1 1 5/2 ~ 1 5/2 1 1 I~~ /~
‘ 1. 1 ~~~~~~ ~~~~~~~partition is 

~8’
’1
~~ S’~~2~ 

i’~ i (-~
) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
For the interval [—f-, 11 the best l inear st a rt ing  ap t r o x i m at i o n  is

p*(x) - .3731163725x + .6285515591 with l
1/3~~~~2

I 1] = 2.77582 x l0~~
2 /~ —12and n1,3(—~--, 11 of the order 10

The above variety of possibilit Ies indicates the  f l e x i b i l i t y  of these

sort of algo ri thns.  Thus , in designing a specific subrout ine for calculatin z

a fixed root one can try to minimize the effect of such things as machint-~

that are relatively slow in cori~puting a divide and so on. -

- _0

-

~ 

- -~~~~~- - -
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